Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
JMIR Res Protoc ; 12: e48183, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: covidwho-20234543

RESUMO

BACKGROUND: In hospitalized patients with COVID-19, the dosing and timing of corticosteroids vary widely. Low-dose dexamethasone therapy reduces mortality in patients requiring respiratory support, but it remains unclear how to treat patients when this therapy fails. In critically ill patients, high-dose corticosteroids are often administered as salvage late in the disease course, whereas earlier administration may be more beneficial in preventing disease progression. Previous research has revealed that increased levels of various biomarkers are associated with mortality, and whole blood transcriptome sequencing has the ability to identify host factors predisposing to critical illness in patients with COVID-19. OBJECTIVE: Our goal is to determine the most optimal dosing and timing of corticosteroid therapy and to provide a basis for personalized corticosteroid treatment regimens to reduce morbidity and mortality in hospitalized patients with COVID-19. METHODS: This is a retrospective, observational, multicenter study that includes adult patients who were hospitalized due to COVID-19 in the Netherlands. We will use the differences in therapeutic strategies between hospitals (per protocol high-dose corticosteroids or not) over time to determine whether high-dose corticosteroids have an effect on the following outcome measures: mechanical ventilation or high-flow nasal cannula therapy, in-hospital mortality, and 28-day survival. We will also explore biomarker profiles in serum and bronchoalveolar lavage fluid and use whole blood transcriptome analysis to determine factors that influence the relationship between high-dose corticosteroids and outcome. Existing databases that contain routinely collected electronic data during ward and intensive care admissions, as well as existing biobanks, will be used. We will apply longitudinal modeling appropriate for each data structure to answer the research questions at hand. RESULTS: As of April 2023, data have been collected for a total of 1500 patients, with data collection anticipated to be completed by December 2023. We expect the first results to be available in early 2024. CONCLUSIONS: This study protocol presents a strategy to investigate the effect of high-dose corticosteroids throughout the entire clinical course of hospitalized patients with COVID-19, from hospital admission to the ward or intensive care unit until hospital discharge. Moreover, our exploration of biomarker and gene expression profiles for targeted corticosteroid therapy represents a first step towards personalized COVID-19 corticosteroid treatment. TRIAL REGISTRATION: ClinicalTrials.gov NCT05403359; https://clinicaltrials.gov/ct2/show/NCT05403359. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/48183.

2.
Clin Transl Imaging ; 11(3): 297-306, 2023.
Artigo em Inglês | MEDLINE | ID: covidwho-2285180

RESUMO

Purpose: We report the findings of four critically ill patients who underwent an [18F]FDG-PET/CT because of persistent inflammation during the late phase of their COVID-19. Methods: Four mechanically ventilated patients with COVID-19 were retrospectively discussed in a research group to evaluate the added value of [18F]FDG-PET/CT. Results: Although pulmonary PET/CT findings differed, bilateral lung anomalies could explain the increased CRP and leukocytes in all patients. This underscores the limited ability of the routine laboratory to discriminate inflammation from secondary infections. Based on PET/CT findings, a secondary infection/inflammatory focus was suspected in two patients (pancreatitis and gastritis). Lymphadenopathy was present in patients with a detectable SARS-CoV-2 viral load. Muscle uptake around the hips or shoulders was observed in all patients, possibly due to the process of heterotopic ossification. Conclusion: This case series illustrates the diagnostic potential of [18F]FDG-PET/CT imaging in critically ill patients with persistent COVID-19 for the identification of other causes of inflammation and demonstrates that this technique can be performed safely in mechanically ventilated critically ill patients.

3.
Eur J Anaesthesiol ; 38(12): 1274-1283, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: covidwho-1700154

RESUMO

BACKGROUND: There is uncertainty about how much positive end-expiratory pressure (PEEP) should be used in patients with acute respiratory distress syndrome (ARDS) due to coronavirus disease 2019 (COVID-19). OBJECTIVE: To investigate whether a higher PEEP strategy is superior to a lower PEEP strategy regarding the number of ventilator-free days (VFDs). DESIGN: Multicentre observational study conducted from 1 March to 1 June 2020. SETTING AND PATIENTS: Twenty-two ICUs in The Netherlands and 933 invasively ventilated COVID-19 ARDS patients. INTERVENTIONS: Patients were categorised retrospectively as having received invasive ventilation with higher (n=259) or lower PEEP (n=674), based on the high and low PEEP/FiO2 tables of the ARDS Network, and using ventilator settings and parameters in the first hour of invasive ventilation, and every 8 h thereafter at fixed time points during the first four calendar days. We also used propensity score matching to control for observed confounding factors that might influence outcomes. MAIN OUTCOMES AND MEASURES: The primary outcome was the number of VFDs. Secondary outcomes included distant organ failures including acute kidney injury (AKI) and use of renal replacement therapy (RRT), and mortality. RESULTS: In the unmatched cohort, the higher PEEP strategy had no association with the median [IQR] number of VFDs (2.0 [0.0 to 15.0] vs. 0.0 [0.0 to 16.0] days). The median (95% confidence interval) difference was 0.21 (-3.34 to 3.78) days, P = 0.905. In the matched cohort, the higher PEEP group had an association with a lower median number of VFDs (0.0 [0.0 to 14.0] vs. 6.0 [0.0 to 17.0] days) a median difference of -4.65 (-8.92 to -0.39) days, P = 0.032. The higher PEEP strategy had associations with higher incidence of AKI (in the matched cohort) and more use of RRT (in the unmatched and matched cohorts). The higher PEEP strategy had no association with mortality. CONCLUSION: In COVID-19 ARDS, use of higher PEEP may be associated with a lower number of VFDs, and may increase the incidence of AKI and need for RRT. TRIAL REGISTRATION: Practice of VENTilation in COVID-19 is registered at ClinicalTrials.gov, NCT04346342.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Humanos , Respiração com Pressão Positiva , Síndrome do Desconforto Respiratório/diagnóstico , Síndrome do Desconforto Respiratório/epidemiologia , Síndrome do Desconforto Respiratório/terapia , Estudos Retrospectivos , SARS-CoV-2 , Ventiladores Mecânicos
5.
Front Immunol ; 12: 720192, 2021.
Artigo em Inglês | MEDLINE | ID: covidwho-1378190

RESUMO

COVID-19 might lead to multi-organ failure and, in some cases, to death. The COVID-19 severity is associated with a "cytokine storm." Danger-associated molecular patterns (DAMPs) are proinflammatory molecules that can activate pattern recognition receptors, such as toll-like receptors (TLRs). DAMPs and TLRs have not received much attention in COVID-19 but can explain some of the gender-, weight- and age-dependent effects. In females and males, TLRs are differentially expressed, likely contributing to higher COVID-19 severity in males. DAMPs and cytokines associated with COVID-19 mortality are elevated in obese and elderly individuals, which might explain the higher risk for severer COVID-19 in these groups. Adenosine signaling inhibits the TLR/NF-κB pathway and, through this, decreases inflammation and DAMPs' effects. As vaccines will not be effective in all susceptible individuals and as new vaccine-resistant SARS-CoV-2 mutants might develop, it remains mandatory to find means to dampen COVID-19 disease severity, especially in high-risk groups. We propose that the regulation of DAMPs via adenosine signaling enhancement might be an effective way to lower the severity of COVID-19 and prevent multiple organ failure in the absence of severe side effects.


Assuntos
Alarminas/imunologia , COVID-19/fisiopatologia , Mediadores da Inflamação/imunologia , Adenosina/metabolismo , Alarminas/antagonistas & inibidores , Animais , COVID-19/complicações , COVID-19/imunologia , COVID-19/terapia , Humanos , Inflamação/prevenção & controle , Mediadores da Inflamação/antagonistas & inibidores , Insuficiência de Múltiplos Órgãos/etiologia , Insuficiência de Múltiplos Órgãos/prevenção & controle , Gravidade do Paciente , Transdução de Sinais , Receptores Toll-Like/antagonistas & inibidores , Receptores Toll-Like/imunologia
6.
Crit Care ; 25(1): 202, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: covidwho-1266500

RESUMO

BACKGROUND: The mechanisms driving acute kidney injury (AKI) in critically ill COVID-19 patients are unclear. We collected kidney biopsies from COVID-19 AKI patients within 30 min after death in order to examine the histopathology and perform mRNA expression analysis of genes associated with renal injury. METHODS: This study involved histopathology and mRNA analyses of postmortem kidney biopsies collected from patients with COVID-19 (n = 6) and bacterial sepsis (n = 27). Normal control renal tissue was obtained from patients undergoing total nephrectomy (n = 12). The mean length of ICU admission-to-biopsy was 30 days for COVID-19 and 3-4 days for bacterial sepsis patients. RESULTS: We did not detect SARS-CoV-2 RNA in kidney biopsies from COVID-19-AKI patients yet lung tissue from the same patients was PCR positive. Extensive acute tubular necrosis (ATN) and peritubular thrombi were distinct histopathology features of COVID-19-AKI compared to bacterial sepsis-AKI. ACE2 mRNA levels in both COVID-19 (fold change 0.42, p = 0.0002) and bacterial sepsis patients (fold change 0.24, p < 0.0001) were low compared to control. The mRNA levels of injury markers NGAL and KIM-1 were unaltered compared to control tissue but increased in sepsis-AKI patients. Markers for inflammation and endothelial activation were unaltered in COVID-19 suggesting a lack of renal inflammation. Renal mRNA levels of endothelial integrity markers CD31, PV-1 and VE-Cadherin did not differ from control individuals yet were increased in bacterial sepsis patients (CD31 fold change 2.3, p = 0.0006, PV-1 fold change 1.5, p = 0.008). Angiopoietin-1 mRNA levels were downregulated in renal tissue from both COVID-19 (fold change 0.27, p < 0.0001) and bacterial sepsis patients (fold change 0.67, p < 0.0001) compared to controls. Moreover, low Tie2 mRNA expression (fold change 0.33, p = 0.037) and a disturbed VEGFR2/VEGFR3 ratio (fold change 0.09, p < 0.0001) suggest decreased microvascular flow in COVID-19. CONCLUSIONS: In a small cohort of postmortem kidney biopsies from COVID-19 patients, we observed distinct histopathological and gene expression profiles between COVID-19-AKI and bacterial sepsis-AKI. COVID-19 was associated with more severe ATN and microvascular thrombosis coupled with decreased microvascular flow, yet minimal inflammation. Further studies are required to determine whether these observations are a result of true pathophysiological differences or related to the timing of biopsy after disease onset.


Assuntos
COVID-19/patologia , Expressão Gênica/genética , Rim/patologia , Rim/fisiopatologia , Sepse/patologia , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/fisiopatologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Análise de Variância , COVID-19/genética , COVID-19/fisiopatologia , Estado Terminal/terapia , Feminino , Humanos , Unidades de Terapia Intensiva/organização & administração , Unidades de Terapia Intensiva/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade , Sepse/genética , Sepse/fisiopatologia , Escore Fisiológico Agudo Simplificado
7.
Lancet Respir Med ; 9(2): 139-148, 2021 02.
Artigo em Inglês | MEDLINE | ID: covidwho-1199179

RESUMO

BACKGROUND: Little is known about the practice of ventilation management in patients with COVID-19. We aimed to describe the practice of ventilation management and to establish outcomes in invasively ventilated patients with COVID-19 in a single country during the first month of the outbreak. METHODS: PRoVENT-COVID is a national, multicentre, retrospective observational study done at 18 intensive care units (ICUs) in the Netherlands. Consecutive patients aged at least 18 years were eligible for participation if they had received invasive ventilation for COVID-19 at a participating ICU during the first month of the national outbreak in the Netherlands. The primary outcome was a combination of ventilator variables and parameters over the first 4 calendar days of ventilation: tidal volume, positive end-expiratory pressure (PEEP), respiratory system compliance, and driving pressure. Secondary outcomes included the use of adjunctive treatments for refractory hypoxaemia and ICU complications. Patient-centred outcomes were ventilator-free days at day 28, duration of ventilation, duration of ICU and hospital stay, and mortality. PRoVENT-COVID is registered at ClinicalTrials.gov (NCT04346342). FINDINGS: Between March 1 and April 1, 2020, 553 patients were included in the study. Median tidal volume was 6·3 mL/kg predicted bodyweight (IQR 5·7-7·1), PEEP was 14·0 cm H2O (IQR 11·0-15·0), and driving pressure was 14·0 cm H2O (11·2-16·0). Median respiratory system compliance was 31·9 mL/cm H2O (26·0-39·9). Of the adjunctive treatments for refractory hypoxaemia, prone positioning was most often used in the first 4 days of ventilation (283 [53%] of 530 patients). The median number of ventilator-free days at day 28 was 0 (IQR 0-15); 186 (35%) of 530 patients had died by day 28. Predictors of 28-day mortality were gender, age, tidal volume, respiratory system compliance, arterial pH, and heart rate on the first day of invasive ventilation. INTERPRETATION: In patients with COVID-19 who were invasively ventilated during the first month of the outbreak in the Netherlands, lung-protective ventilation with low tidal volume and low driving pressure was broadly applied and prone positioning was often used. The applied PEEP varied widely, despite an invariably low respiratory system compliance. The findings of this national study provide a basis for new hypotheses and sample size calculations for future trials of invasive ventilation for COVID-19. These data could also help in the interpretation of findings from other studies of ventilation practice and outcomes in invasively ventilated patients with COVID-19. FUNDING: Amsterdam University Medical Centers, location Academic Medical Center.


Assuntos
COVID-19/terapia , Respiração Artificial , Idoso , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Países Baixos , Estudos Retrospectivos , Resultado do Tratamento
8.
ERJ Open Res ; 7(1)2021 Jan.
Artigo em Inglês | MEDLINE | ID: covidwho-1143170

RESUMO

Critically ill #COVID19 patients display markedly increased alternative angiotensin pathway activity compared to healthy controls, reflected by increased blood ACE2 levels as well as decreased angiotensin-II and enhanced angiotensin-1-7 formation https://bit.ly/2MU1z4z.

9.
Ann Transl Med ; 8(19): 1251, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: covidwho-994852

RESUMO

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic is rapidly expanding across the world, with more than 100,000 new cases each day as of end-June 2020. Healthcare workers are struggling to provide the best care for COVID-19 patients. Approaches for invasive ventilation vary widely between and within countries and new insights are acquired rapidly. We aim to investigate invasive ventilation practices and outcome in COVID-19 patients in the Netherlands. METHODS: PRoVENT-COVID ('study of PRactice of VENTilation in COVID-19') is an investigator-initiated national, multicenter observational study to be undertaken in intensive care units (ICUs) in The Netherlands. Consecutive COVID-19 patients aged 18 years or older, who are receiving invasive ventilation in the participating ICUs, are to be enrolled during a 10-week period, with a daily follow-up of 7 days. The primary outcome is ventilatory management (including tidal volume expressed as mL/kg predicted body weight and positive end-expiratory pressure expressed as cmH2O) during the first 3 days of ventilation. Secondary outcomes include other ventilatory variables, use of rescue therapies for refractory hypoxemia such as prone positioning and extracorporeal membrane oxygenation, use of sedatives, vasopressors and inotropes; daily cumulative fluid balances; acute kidney injury; ventilator-free days and alive at day 28 (VFD-28), duration of ICU and hospital stay, and ICU, hospital and 90-day mortality. DISCUSSION: PRoVENT-COVID will be the largest observational study to date, with high density ventilatory data and major outcomes. There is urgent need for a better understanding of ventilation practices, and the effects of ventilator settings on outcomes in COVID-19 patients. The results of PRoVENT-COVID will be rapidly disseminated through electronic presentations, such as webinars and electronic conferences, and publications in international peer-reviewed journals. Access to source data will be made available through local, regional and national anonymized datasets on request, and after agreement of the PRoVENT-COVID steering committee. TRIAL REGISTRATION: PRoVENT-COVID is registered at clinicaltrials.gov (identifier NCT04346342).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA